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Abstract

Using a relation between the terms of the spectral sequence of a
Riemannian foliation and its adiabatic limit, we obtain Bochner type
techniques for this special setting and, as a consequence, in the special
case of a Riemannian flow we obtain vanishing conditions for the top
dimensional group of the basic cohomology Hq

b (F)-which is related
to the property of being geodesible. We also extend a Weitzenböck
type formula for the leafwise Laplacian and, for the particular class of
compact foliations, we obtain a generalization of a result due to Ph.
Tondeur, M. Min-Oo and E. Ruh concerning the vanishing of the basic
cohomology under the assumption that certain curvature operators are
positive definite. In the final part we present an example.
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1 Introduction

Throughout this paper we consider a Riemannian foliation F defined on a
closed Riemannian manifold M with a bundle-like metric g [Re].

Our paper basically uses the joint works of J. A. Álvarez López and Y.
Kordyukov [AlKo1] and [AlKo2]. In these papers the authors introduce a

∗Partially supported by Grant Nr. MTM2004-08214
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Hodge-de Rham theory for the spectral sequences of a Riemannian foliation
(which is a generalization of the basic Hodge-de Rham theory).

We will start out by considering the C∞ foliation F on a closed manifold
M ; the dimension of foliation will be denoted by p, the codimension by q
and (Ω, d) will denote the de Rham complex on M . Let us now consider the
following bigrading for Ω, induced by the foliated structure and the bundle-
like metric:

Ωu,v = C∞
(

u∧
TF⊥∗ ⊕

v∧
TF∗

)
, u, v ∈ Z. (1)

Then, the de Rham derivative and coderivative split into bihomogeneous
components as follows:

d = d0,1 + d1,0 + d2,−1, δ = δ0,−1 + δ1,0 + δ−2,1, (2)

where the indices describe the corresponding bigrading. We notice that d2,−1

and δ−2,1 are of 0-th order and vanish if and only if the distribution TF⊥ is
completely integrable.

The spectral sequence (Ek, dk) on F is defined using the following de-
creasing filtration:

Ω = Ω0 ⊃ Ω1 ⊃ ... ⊃ Ωq ⊃ Ωq+1 = 0,

where the space of r−forms of filtration degree ≥ k is given by:

Ωr
k = {ω ∈ Ωr | iXω = 0, (∀) X = X1 ∧ ... ∧Xr−k+1, Xi ∈ X (F)} .

In the following, we consider the terms of the differential spectral sequence
(Ek, dk) defined in the classical way (see e.g [McC]).

The C∞ topology on Ω induces a topology on each Eu,v
k , with respect

to the bigrading. In this manner, each dk becomes a continuous operator
on Ek =

⊕
u,v

Eu,v
k . So we obtain two bigraded complexes: 0k ⊂ Ek and the

quotient complex Êk = Ek/0k.
Considering the sequence of canonically induced operators dk : Eu,v

k →
Eu+k,v−k+1

k , J. A. Álvarez López and Y. Kordyukov inductively define a se-
quence of second order operators of Hodge-de Rham type: ∆0, ∆1, ... and a
corresponding sequence of eigenspaces H1 ⊇ H2 ⊇ ... ⊇ H∞ such that:

Ω = H1 ⊕ im d0 ⊕ ker δ0,
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H1 = H2 ⊕ im d1 ⊕ ker δ1,

...

yielding H1 ' Ê1, Hk ' Ek, for k = 2, 3, ...∞, the above splitting being just
the corresponding Hodge-de Rham decomposition.

Now the metric g can be written as g = g⊥ ⊕ gF with respect to the
decomposition TM = TF⊥⊕TF . Introducing a parameter h > 0, we define
the family of metrics

gh = h−2g⊥ ⊕ gF .

The limit of the Riemannian manifold (M, gh) as h ↓ 0 is known as the
adiabatic limit. It was introduced by E. Witten for a Riemannian bundle
over the circle [W]. In our paper the adiabatic limit procedure will be just
a tool in order to achieve Weitzenböck type formula for the terms of the
differentiable spectral sequence, this appearing as a natural consequence of
the above mentioned Hodge-de Rham theory.

The bundle-like metric induces also a splitting of the cotangent bundle
TM∗ = TF⊥∗ ⊕ TF∗. The canonical transversal and leafwise projection
operator will be denoted by prT and prL respectively. We can consider the
rescaling homomorphism Θh : (TM∗, gh) → (TM∗, g), defined using the
identity operators idTF⊥∗ and idTF∗ :

Θh = h idTF⊥∗ ⊕ idTF∗ . (3)

The induced rescaling homomorphism on differential forms or tensor fields
will be denoted also by Θh. One can prove that these are in fact isometries of
Riemannian vector bundles (see e.g [MazMe]). The rescaled Laplace operator
Θh∆gh

Θ−1
h induces a rescaled Weitzenböck formula (see (22)):

〈∆hω, ω〉 =
〈∇hω,∇hω

〉
+

〈
Khω, ω

〉
.

for any ω ∈ Ω; the inner product is obtained integrating on the closed Rie-
mannian manifold M (see e.g. [CrPuRa]).

The main ingredient in our further considerations is Proposition 1 which
is a direct consequence of Corollary C in [AlKo2]. This result, together with
Theorem B in [AlKo1] offers us a description of a differential form which lies
in Hu,v

2 :
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Proposition 1 For any ωu,v ∈ Ωu,v, with u + v = r, we have ωu,v ∈ Hu,v
2

if and only if there is a family of differential forms ωh ∈ Ωr depending on
h > 0, so that ωh → ωu,v in L2 norm as h ↓ 0, and

〈∆hωh, ωh〉 ∈ o(h2).

Using Proposition 1 and introducing a Bochner type technique for the
spectral sequence, in the last section of the paper we prove the following
vanishing results for the E2 term of the spectral sequence; these results in-
volve the operator K (see (13)). The upper index comes from the polynomial
description of Kh, while the lower indices come from the bigrading (see (24)):

Theorem 1 Considering a Riemannian foliation (M,F , g), if the differen-
tial operators of 0-th order K0, K1 are non-negative operators, and K2 is
strictly positive, then the second term E2 of the spectral sequence vanishes.

Let us consider another curvature function specific to a Riemannian fo-
liation: the mixed scalar curvature (see e.g. [Rov]). At an arbitrary point

x ∈ M , we define scalmixed :=
p∑

i=1

q∑
j=1

R (ei, fa, fa, ei), where 1 ≤ i ≤ p and

1 ≤ a ≤ q such that fa ∈ TF⊥ and ei ∈ TF form an orthonormal basis
{fa, ei} at x.

We state now the following vanishing result which uses the mixed scalar
curvature associated to the Riemannian type tensor R0 (see (10)):

Theorem 2 If (M,F , g) is a Riemannian foliation with scal0mixed > 0 on
M , the tangent Ricci operator RicF is non-negative and furthermore the
operator K1

−1,1 is non-negative, then Hq
b (F) = 0.

An interesting result is related to the case p = 1-the so called Riemannian
flows :

Corollary 1 If (M,F , g) is a Riemannian flow so that scal0mixed > 0 on M ,
then Hq

b (F) = 0, and the foliation is not ”geodesible”.

In dimension 3, the topological aspects of Riemannian flows were classified
by Y. Carrière in [Car]. In higher dimension aspects related to the basic co-
homology, more exactly vanishing results involving basic cohomology groups
might be obtained using the above techniques.
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In the last part of this paper we apply the above considerations for a
SO(3,R)-foliation in order to obtain concrete vanishing results.

The results contained in this paper are part of my PhD Thesis [Sl] and
were presented within the Conference Foliations 2005, held in Lodz, Poland.

Finally, I would like to thank Jesús A. Álvarez López and Y. Kordyukov
for helpful comments made about this paper. Also, I would like to thank the
referee for observations and suggestions.

2 Levi-Civita connection and adiabatic limits

In what follows let us consider {Fa}, 1 ≤ a ≤ q, as being C∞ local in-
finitesimal transformation of (M,F) orthogonal to the leaves, while {Ei},
1 ≤ i ≤ p, will be C∞ local vector fields tangent to the leaves. Furthermore,
assume that {Fa, Ei} determine an orthonormal basis {fa, ei} at any point
where they are defined. Let us consider also the dual coframes {θa, ωi} for
{Fa, Ei}, and {αa, βi} for {fa, ei}. We denote by UT the transverse compo-
nent and by UL the leafwise component of a local tangent vector field U . For
the sake of simplicity, the local vector fields {Fa} will be called basic vector
fields (see e.g [Mo]). In the following we consider arbitrary local tangent
vector fields U , V , Z and W . First of all, let us remind the Gray-O’Neill
tensors fields A and T [ON]:

TUV := ∇L
ULV

T +∇T
ULV

L,

AUV := ∇L
UT V T +∇T

UT V L,

where ∇ is the Levi-Civita connection. Using the classical Koszul formula

2g(∇UV, Z) = U(g(V, Z)) + V (g(U,Z))− Z(g(U, V ))

+g([U, V ], Z) + g([Z, U ], V ) + g(U, [Z, V ]),

and considering the similar formula for the metric gh, we are able to ex-
press all the components of the Levi-Civita connection (determined by the
transverse-tangent decomposition) as polynomials in h. We obtain:

Proposition 2 The canonical Levi-Civita connections associated to the met-
rics gh and g are related by the following relations:
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∇gh,T
Fa

Fb = ∇T
Fa

Fb, ∇gh,L
Fa

Fb = ∇L
Fa

Fb = AFaFb,

∇gh,T
Ei

Ej = h2∇T
Ei

Ej = h2TEi
Ej, ∇gh,L

Ei
Ej = ∇L

Ei
Ej,

∇gh,T
Fa

Ei = h2∇T
Fa

Ei = h2AFaEi, ∇gh,L
Fa

Ei = ∇L
Fa

Ei,

∇gh,T
Ei

Fa = h2∇T
Ei

Fa = −h2A∗
Fa

Ei, ∇gh,L
Ei

Fa = ∇L
Ei

Fa = TEi
Fa,

(4)

for arbitrary indices a, b, c, i, j and k, with 1 ≤ a, b, c ≤ q and 1 ≤ i, j, k ≤ p,
respectively.

Proof. In our setting g(Ei, Ej) and g(Fa, Fb) are constant functions,
g(V T ,WL) = 0, and we have similar relations for the metric gh. Also
[Ei, Fa]

T = 0, Fa being basic local vector field. As a consequence, using
Koszul formula, we get:

2gh(∇gh

Fa
Fb, Fc) = gh([Fa, Fb], Fc) + gh([Fc, Fa], Fb) + gh(Fa, [Fc, Fb])

= h−2 (g([Fa, Fb], Fc) + g([Fc, Fa], Fb) + g(Fa, [Fc, Fb]))

= 2h−2g(∇FaFb, Fc),

2gh(∇gh

Fa
Fb, Ei) = gh([Fa, Fb], Ei) = g([Fa, Fb], Ei)) = 2g(∇FaFb, Ei),

2gh(∇gh

Ei
Ej, Fa) = gh([Fa, Ei], Ej) + gh(Ei, [Fa, Ej]) = 2g(∇Ei

Ej, Fa),

2gh(∇gh

Ei
Ej, Ek) = gh([Ei, Ej], Ek) + gh([Ek, Ei], Ej) + gh(Ei, [Ek, Ej])

= g([Ei, Ej], Ek) + g([Ek, Ei], Ej) + g(Ei, [Ek, Ej])

= 2g(∇Ei
Ej, Ek).

Now, considering that gh(∇gh

Fa
Fb, Fc) = h−2g(∇gh

Fa
Fb, Fc), gh(∇gh

Ei
Ej, Fa) =

h−2g(∇gh

Ei
Ej, Fa), gh(∇gh

Fa
Fb, Ei) = g(∇gh

Fa
Fb, Ei), gh(∇gh

Ei
Ej, Ek) = g(∇gh

Ei
Ej, Ek),

we obtained the first four relations. The last four relations can be obtained
in the following way: as {Fa, Ei} is orthonormal, the following relations hold

g (∇UEi, Fa) = −g (Ei,∇UFa) ,

gh (∇gh

U Ei, Fa) = −gh (Ei,∇gh

U Fa) ,

for an arbitrary vector field U on M and, as a consequence, we get ∇gh,T
Fa

Ei =

h2∇T
Fa

Ei and ∇gh,L
Fa

Ei = ∇L
Fa

Ei. Finally, as the torsion tensor fields T and
Tgh

vanish, we obtain the last two relations.
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Proposition 3 ∇ and ∇gh satisfy

∇gh,T
Fa

θb = ∇T
Fa

θb, ∇gh,L
Fa

θa = h2∇L
Fa

θa,

∇gh,T
Ei

ωj = ∇T
Ei

ωj, ∇gh,L
Ei

ωj = ∇L
Ei

ωj,

∇gh,T
Fa

ωi = ∇T
Fa

ωi, ∇gh,L
Fa

ωi = ∇T
Fa

ωi,

∇gh,T
Ei

θa = h2∇T
Ei

θa, ∇gh,L
Ei

θa = h2∇L
Ei

θa.

(5)

Proof: We obtain the above relations using (4) and the fact that

∇T
Uθb(Fa) = −θb(∇T

UFa), ∇L
Uθb(Ei) = −θb(∇T

UEi),
∇T

Uωi(Fa) = −ωi(∇L
UFa), ∇L

Uωi(Ej) = −ωi(∇L
UEj),

for any indices i, j, a, b as above and arbitrary U , together with the corre-
sponding relations for the metric gh.

3 Curvature tensor field and adiabatic limits

Using the above relations, we are able to express now some of the the cur-
vature operator components as polynomials in h. We denote by RT

gh,U,V and
RL

gh,U,V the transversal and respectively the leafwise projection of the cur-
vature operator Rgh,U,V = ∇gh

U ∇gh

V − ∇gh

V ∇gh

U − ∇gh

[U,V ] acting on differential
forms.

First, using the notations adopted in the previous section, we obtain:

RT
gh,fa,fb

αc = ∇T
fa
∇T

Fb
θc −∇T

fb
∇T

Fa
θc −∇T

[Fa,Fb]T θc (6)

+h2
(
∇T

fa
∇L

Fb
θc −∇T

fb
∇L

Fa
θc −∇T

[Fa,Fb]Lθ
c
)

= R⊥
fa,fb

θc + h2RT ,2
fa,fb

θc.

In the above calculations we denoted by R⊥ the transversal curvature ten-
sor field. Let us also consider the transversal curvature operator ρ⊥, defined
such that g

(
ρ⊥(U, V ), W ∧ Z

)
= R⊥ (U, V, Z, W ) for arbitrary local vector

fields U , V , W and Z [MiRuTo].
In a similar manner,

RL
gh,ei,ej

βk = ∇L
ei
∇L

Ej
ωk −∇L

ej
∇L

Ei
ωk −∇L

[Ei,Ej ]
ωk (7)

+h2
(
∇L

ei
∇T

Ej
ωk −∇L

ej
∇T

Ei
ωk

)

= RF
ei,ej

βk + h2RL,2
ei,ej

βk.
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If we regard the leaves as immersed submanifolds, with the canonically
induced metric, then the curvature operator RF is in fact the curvature
operator on leaves and it will be called in this paper the intrinsic curvature
operator on leaves.

We calculate now the following two curvature terms:

RL
gh,ei,fa

αc = h2
(∇L

ei
∇L

Fa
θc −∇L

fa
∇L

Ei
θc −∇L

[Ei,Fa]θ
c (8)

+∇L
ei
∇T

Fa
θc

)− h4
(∇L

fa
∇T

Ei
θc

)

= h2RL,2
ei,fa

αc + h4RL,4
ei,fa

αc,

RT
gh,ei,ej

αc = h4
(
∇T

ei
∇T

Ej
θc −∇T

ej
∇T

Ei
θc

)
(9)

+h2
(
∇T

ei
∇L

Ej
θc −∇T

ej
∇L

Ei
θc −∇T

[Ei,Ej ]
θc

)

= h4RT ,4
ei,ej

αc + h2RT ,2
ei,ej

αc.

Due to the fact that {fa, ei} is an orthonormal basis, we obtain

RL
gh,ei,fa

αa(ei) = h2gh (Rgh,ei,fafa, ei)

= h2Rgh
(ei, fa, fa, ei) ,

and, as a consequence,

RL,2
ei,fa

αa(ei) = R0 (ei, fa, fa, ei) ,

where by R0 (ei, fa, fa, ei) we denote the h0 coefficient of gh (Rgh,ei,fafa, ei).
Using the O’Neill calculations (see [ON]), we can write:

gh (Rgh,ei,fafa, ei) = gh

((∇gh

fa
Tgh

)
ei

ei, fa

)
− gh (Tgh,ei

fa, Tgh,ei
fa)

+gh

((∇gh
ei

Agh

)
fa

fa, ei

)
+ gh (Agh,faei, Agh,faei) .

Considering the relations (4), with respect to the particular orthonormal
basis {fa, ei}, we get

R0(ei, fa, fa, ei) = g
(
(∇faT )ei

ei, fa

)
+ g (Tei

fa, Tei
fa) (10)

+g (∇ei
(Afafa) , ei) .
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Finally, we have:

RL
gh,fa,fb

αc = h2
(∇L

fa
∇L

Fb
θc −∇L

fb
∇L

Fa
θc −∇L

[Fa,Fb]
θc (11)

+∇L
fa
∇T

Fb
θc −∇L

fb
∇T

Fa
θc

)

= h2RL,2
fa,fb

αc,

and

RT
gh,ei,fa

αc = h2
(∇T

ei
∇T

Fa
θc −∇T

fa
∇T

Ei
θc −∇T

[Ei,Fa]θ
c (12)

+∇T
ei
∇L

Fa
θc −∇T

fa
∇L

Ei
θc

)

= h2RT ,2
ei,fa

αc.

Remark 1 RL
gh,fa,fb

αc and RT
gh,ei,fa

αc have not an h0 coefficient.

4 Weitzenböck formula and adiabatic limits

Let us now consider the classical Weitzenböck formula (see e.g. [Pet]). We
take an orthonormal frame field {Ei} in the neighborhood of an arbitrary
point x ∈ M which induces an orthonormal basis {εi} at x such that ∇εi

Ej =
0, with 1 ≤ i, j ≤ n. If {Θi} and {θi} are the dual coframes for {Ei} and
{εi} respectively, considering that d =

∑
i

Θi ∧ ∇Ei
and δ = −∑

i

iEi
∇Ei

, we

can express the Laplace operator:

∆ = dδ + δd = −
∑
i,j

θi ∧∇εi

(
iEj
∇Ej

)−
∑
j,i

iεj
∇εj

(
Θi ∧∇Ei

)
(13)

= −
∑

i

∇εi
∇εi

+
∑
i,j

θi ∧ iεj

(∇εj
∇Ei

−∇εi
∇Ej

)

= ∇∗∇+
∑
i,j

θi ∧ iεj
Rεj ,εi

= ∇∗∇+
∑
i<j

εi · εj ·Rεi,εj
,

where dot stands for Clifford multiplication. In the following we denote the
0-th order operator

∑
i<j

εi · εj ·Rεi,εj
=

∑
i,j

θi ∧ iεj
Rεj ,εi

by K.
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If we choose a foliated chart U on M , then

Ωu,v(U) = Ωu(U/FU) ∧ Ω0,v(U) ≡ Ωu(U/FU)⊗ Ω0,v(U), (14)

according to [AlKo2]. Then, if we take α ∈ Ωu(U/FU) and β ∈ Ω0,v(U), we
can evaluate the above operator acting on differential forms of the type α∧β,
the general formula being easy to obtain by linearity.

We consider now the covariant derivative ∇ induced on Ωu,v, with u and
v satisfying u + v = r:

∇ : Ωu,v −→ C∞(TM∗)⊗ C∞(ΛrTM∗).

Now we define the following six differential operators:

∇T ,0,0 = (prT ⊗ πu,v) ◦ ∇, ∇L,0,0 = (prL ⊗ πu,v) ◦ ∇,
∇T ,−1,1 = (prT ⊗ πu−1,v+1) ◦ ∇, ∇L,−1,1 = (prL ⊗ πu−1,v+1) ◦ ∇,
∇T ,1,−1 = (prT ⊗ πu+1,v−1) ◦ ∇, ∇L,1,−1 = (prL ⊗ πu+1,v−1) ◦ ∇.

where πu,v, πu−1,v+1 and πu+1,v−1 are canonical projections induced by the
bigrading.

The above operators can be naturally extended from Ωu,v to Ω.

Remark 2 It follows easily that:

∇ω = ∇T ,0,0ω +∇L,0,0ω +∇T ,−1,1ω (15)

+∇L,−1,1ω +∇T ,1,−1ω +∇L,1,−1ω.

Considering also the bigrading, we get:

K = K−2,2 + K−1,1 + K0,0 + K1,−1 + K2,−2. (16)

Note that
∑
i,j

θi ∧ iεj
Rεj ,εi

(α ∧ β) =
∑
i,j

θi ∧ iεj
Rεj ,εi

α ∧ β + α ∧
∑
i,j

θi ∧ iεj
Rεj ,εi

β

+
∑
i,j

θi ∧ iεj
α ∧Rεj ,εi

β +
∑
i,j

Rεj ,εi
α ∧ θi ∧ iεj

β.

Using the orthonormal frames {fa, ei} and {αa, βi} at the arbitrary point
x, we obtain:

K−2,2(α ∧ β) =
∑
i,a

βi ∧RL
fa,ei

ifaα ∧ β, (17)
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K−1,1(α ∧ β) =
∑

a,b

αa ∧RL
fb,fa

ifb
α ∧ β +

∑
i,a

βi ∧ ifaα ∧RL
fa,ei

β (18)

+
∑
i,a

βi ∧ ifaR
T
fa,ei

α ∧ β +
∑
i,j

RL
ei,ej

α ∧ βj ∧ iei
β

+
∑
i,j

βi ∧ iej
RL

ej ,ei
α ∧ β,

K0,0(α ∧ β) =
∑

a,b

αa · αb ·RT
fa,fb

α⊗ β +
∑

a,b

αa ∧ ifb
α⊗RL

fb,fa
β (19)

+
∑
i,a

βi ∧ ifaα⊗RT
fa,ei

β + α⊗
∑
i,a

βi ∧ ifaR
T
fa,ei

β

+
∑
i,a

αa ∧ iei
RL

ei,fa
α⊗ β +

∑
i,a

RL
ei,fa

α⊗ αa ∧ iei
β

+
∑
i,j

RT
ei,ej

α⊗ βi ∧ iej
β + α⊗

∑
i,j

βi · βj ·RL
ei,ej

β,

K1−1(α ∧ β) =
∑

a,b

αa ∧ ifb
α ∧RT

fb,fa
β + α ∧

∑

a,b

αa ∧ ifb
RT

fb,fa
β (20)

+
∑
i,a

RT
ei,fa

α ∧ αa ∧ iei
β + α ∧

∑
i,a

αa ∧ iei
RL

ei,fa
β

+α ∧
∑
i,j

βj ∧RT
ei,ej

iei
β,

K−2,2(α ∧ β) = α ∧
∑
i,a

αa ∧RT
ei,fa

iei
β. (21)

Using the rescaling homomorphism mentioned in the introductory section,
let us now define

∆h := Θh∆gh
Θ−1

h ,

∇h := Θh∇ghΘ−1
h

and
Kh := ΘhKgh

Θ−1
h .

Now, applying (13) for Θ−1
h ω, where ω ∈ Ωr and using that Θh is in fact an

isometry of Riemannian vector bundles, we obtain the formula

〈∆hω, ω〉 =
〈∇hω,∇hω

〉
+

〈
Khω, ω

〉
. (22)
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We will study each term of (22), our goal being to express all terms as
polynomials in h. For the first one we refer to [AlKo2]:

〈∆hω, ω〉 = 〈∆0ω, ω〉+ h 〈(D⊥D0 + D0D⊥)ω, ω〉
+h2 (〈(D0F + FD0)ω, ω〉+ 〈∆⊥ω, ω〉)
+h3 〈(D⊥F + FD⊥)ω, ω〉+ h4

〈
F 2ω, ω

〉
,

where F is the 0-th order operator d2,−1 + δ−2,1, D0 := d0,1 + δ0,−1, ∆0 =
D0 ◦D0 and D⊥ := d1,0 + δ−1,0 (see [AlKo2]).

Let us study now the second term:

∇h = Θh∇ghΘ−1
h

= ∇h
T ,0,0 +∇h

L,0,0 +∇h
T ,−1,1 +∇h

L,−1,1 +∇h
T ,1,−1 +∇h

L,1,−1.

Considering the change of the bigrading, we get the following relations:

∇h
T ,0,0 = h∇gh

T ,0,0, ∇h
L,0,0 = ∇gh

L,0,0,
∇h
T ,−1,1 = ∇gh

T ,−1,1, ∇h
L,−1,1 = h−1∇gh

L,−1,1,
∇h
T ,1,−1 = h2∇gh

T ,1,−1, ∇h
L,1,−1 = h∇gh

L,1,−1.
(23)

Remark 3 In accordance with (5), the operators ∇gh

T ,0,0, ∇gh

L,0,0, ∇gh

T ,−1,1,
∇gh

L,−1,1, ∇gh

T ,1,−1 and ∇gh

L,1,−1 - induced by the metric gh, are homogeneous
with respect to h when they act on Ωu(U/FU) and Ω0,v(U).

Using (5), (14), (23) and the above remark we write all these operators
only using the Levi-Civita connection associated to g and the adiabatic pa-
rameter h.

For the first two operators we have:

∇h
T ,0,0(α ∧ β) = h

(∇gh

T ,0,0α⊗ β + α⊗∇gh

T ,0,0β
)

= h∇T ,0,0(α ∧ β).
∇h
L,0,0(α ∧ β) = ∇gh

L,0,0(α ∧ β) = α⊗∇L,0,0β + h2∇L,0,0α⊗ β.

In the following we denote idΩu(U/FU ) ⊗∇L,0,0 by ∇0
L,0,0 and ∇L,0,0 ⊗ idΩ0,·(U)

by ∇2
L,0,0.

For the last four operators we obtain:

∇h
T ,−1,1(α ∧ β) = ∇gh

T ,−1,1(α ∧ β) = h2∇T ,−1,1α ∧ β = h2∇T ,−1,1(α ∧ β),
∇h
L,−1,1(α ∧ β) = h−1∇gh

L,−1,1(α ∧ β) = h∇L,−1,1α ∧ β = h∇L,−1,1(α ∧ β),
∇h
T ,1,−1(α ∧ β) = h2∇h

T ,1,−1(α ∧ β) = h2 α ∧∇T ,1,−1β = h2∇T ,1,−1(α ∧ β),
∇h
L,1,−1(α ∧ β) = h∇h

L,1,−1(α ∧ β) = hα ∧∇L,1,−1β = h∇L,1,−1(α ∧ β).

Summing up, we get:
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Proposition 4 a) The rescaled covariant derivative has the following com-
ponents:

∇h
T ,0,0 = h∇T ,0,0, ∇h

L,0,0 = ∇0
L,0,0 + h2∇2

L,0,0,
∇h
T ,−1,1 = h2∇T ,−1,1, ∇h

L,−1,1 = h∇L,−1,1,
∇h
T ,1,−1 = h2∇T ,1,−1, ∇h

L,1,−1 = h∇L,1,−1.

b) The following polynomial description is valid:

∇hω = ∇0
L,0,0ω + h (∇T ,0,0ω +∇L,−1,1 +∇L,1,−1ωω)

+h2
(∇2

L,0,0ω +∇T ,−1,1ω +∇T ,1,−1ω
)
.

Finally, we express ‖∇hω‖2 as a polynomial in h:

‖∇hω‖2 = ‖∇0
L,0,0ω‖2 + 2h

(〈∇0
L,0,0ω,∇L,1,−1ω

〉
+

〈∇0
L,0,0ω,∇L,−1,1ω

〉)

+h2
(
2
〈∇0

L,0,0ω,∇2
L,0,0ω

〉
+ 2 〈∇L,1,−1ω,∇L,−1,1ω〉+ ‖∇T ,0,0ω‖2

+ ‖∇L,1,−1ω‖2 + ‖∇L,−1,1ω‖2) + o(h2).

Now we investigate the last term of (22). The above formulas concerning
the curvature expression (see (6)-(12)) allow us to express Kh as a polynomial
in h, that is

Kh =
4∑

i=0

hi ·K i

and in accordance with the bigrading, that means:

Ki = K i
−2,2 + K i

−1,1 + K i
0,0 + Ki

1,−1 + K i
2,−2 (24)

for 0 ≤ i ≤ 4.
Some of the above operators will be of particular interest for us in what

follows.

Remark 4 Let us consider (22) for ωu,v ∈ Ωu,v. Both sides of the equality
can be written as polynomials in h; as leafwise Laplacian ∆0 does not change
the bigrading of a differential form, if we write only the coefficients of h0, we
obtain:

〈∆0ω
u,v, ωu,v〉 = ‖∇0

L,0,0ω
u,v‖2 +

〈
K0

0,0ω
u,v, ωu,v

〉
. (25)

The above relation is a Weitzenböck type formula for the leafwise Lapla-
cian ∆0. In fact it is an extension of the result stated in [AlTo], p. 456; for
ω0,. ∈ Ω0,., the above formula becomes the Weitzenböck type formula provided
by the authors in that paper.
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In order to obtain vanishing results we study the K0
0,0 operator. This is

exactly the h0 term of the operator Kh
0,0.

Considering {fh
a , eh

i } and {fa, ei} two orthonormal bases for the gh and
g metric respectively, and the dual bases {αh,a, βh,i} and {αa, βi} with 1 ≤
a ≤ q, 1 ≤ i ≤ p, these bases are subject to the relations:

{
fh

a = h fa, eh
i = ei,

αh,a = h−1αa, βh,i = βi.

Using (19), we obtain:

Kh
0,0(α ∧ β) = h2

{∑

a,b

αa ∧ ifb
RT

gh,fb,fa
α⊗ β +

∑

a,b

αa ∧ ifb
α⊗RL

gh,fb,fa
β

+
∑
i,a

βi ∧ ifaα⊗RT
gh,fa,ei

β + α⊗
∑
a,i

βi ∧ ifaR
T
gh,fa,ei

β

}

+
∑
a,i

αa ∧ iei
RL

gh,ei,fa
α⊗ β +

∑
a,i

RL
gh,ei,fa

α⊗ αa ∧ iei
β

+
∑
i,j

RT
gh,ei,ej

α⊗ βi ∧ iej
β + α⊗

∑
i,j

βi ∧ iej
RL

gh,ej,ei
β.

In each one of the above eight terms, using the relations (6)-(12) we can
calculate the corresponding h0 coefficient. We observe that only the last term
contains such component, so we finally get:

K0
0,0(α ∧ β) = α⊗

∑
i,j

βi ∧ iej
RF

ej,ei
β

= α⊗
∑
i<j

βi · βj ·RF
ei,ej

β.

5 Vanishing conditions for the spectral se-

quence of a Riemannian foliation

According to Proposition 1, assuming that ω ∈ H2, it follows the exis-
tence of a family of smooth forms (ωh)h>0, ωh → ω in L2-norm as h ↓ 0,
and 〈∆hωh, ωh〉 ∈ o (h2). Under these circumstances, we can reshape the
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”rescaled” Weitzenböck formula (22)

〈∆hωh, ωh〉 =
∥∥∇hωh

∥∥2
+

〈
K0ωh, ωh

〉
+ h

〈
K1ωh, ωh

〉
(26)

+h2
〈
K2ωh, ωh

〉
+ o(h2),

so we can prove now Theorem 1.
Proof of Theorem 1. Let ωu,v ∈ Hu,v

2 , ωu,v 6= 0. As above, we consider
a family of differential forms ωh, h > 0, such that ωh → ωu,v in the L2-
norm as h ↓ 0, and 〈∆hωh, ωh〉 ∈ o(h2). We assumed that 〈K0ωh, ωh〉 ≥ 0,
〈K1ωh, ωh〉 ≥ 0, and also that there is a constant c >0 such that 〈K2ωh, ωh〉 >
c ‖ωh‖2, as M is a compact manifold. Then we get

〈∆hωh, ωh〉 =
∥∥∇hωh

∥∥2
+ h0

〈
K0ωh, ωh

〉
+ h1

〈
K1ωh, ωh

〉

+h2
〈
K2ωh, ωh

〉
+ o(h2)

> c ‖ωh‖2 + o(h2),

since ‖∇hωh‖2 + h0 〈K0ωh, ωh〉 + h1 〈K1ωh, ωh〉 ≥ 0, and, as a consequence,
〈∆hωh, ωh〉 /∈ o(h2). The contradiction comes from the fact that we assumed
ωu,v 6= 0. Then Hu,v

2 = 0, and also Eu,v
2 = 0, considering the isomorphism

that exists between these topological vector spaces.
Proof of Theorem 2. We study the particular case when ω = ωq,0 ∈ Hq,0.
First of all, if ωq,0 ∈ Hq,0, let (ωq,0

h )h>0, ωq,0
h = ωq,0 + hβq−1,1

h , βq−1,1
h ∈

Ωq−1,1 be the sequence obtained as above (see also [AlKo2]); under these
circumstances we can refine the Weitzenböck type formula (26):

〈
∆h

(
ωq,0 + hβq−1,1

h

)
, ωq,0 + hβq−1,1

h

〉

=
∥∥∇h

(
ωq,0 + hβq−1,1

h

)∥∥2
+

〈
K0

0,0ω
q,0, ωq,0

〉

+h2
{
2
〈
K1
−1,1ω

q,0, βq−1,1
h

〉
+

〈
K0

0,0β
q−1,1
h , βq−1,1

h

〉

+
〈
K2

0,0ω
q,0, ωq,0

〉}
+ o(h2).

In the relation (16), identifying the corresponding coefficient of h0 and
h2 when writing Kh as a polynomial in h, and considering also the relations
(18)-(19) we finally end up with the necessary formulas for the operators K0

0,0

and K1
−1,1. First of all we observe that K0

0,0α
1∧ ..∧αq = 0; as K0

0,0 is a linear
operator, we extend the result for any ωu,v ∈ Ωu,v.
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Let us now study this operator when acting on βq−1,1 = αi1 ∧ ..∧ αiq−1 ⊗
βk ∈ Ωq−1,1.

K0
0,0β

q−1,1 = αi1 ∧ .. ∧ αiq−1 ⊗
∑
i<j

βi · βj ·RF
ei,ej

βk

= αi1 ∧ .. ∧ αiq−1 ⊗RicFβk

= RicFβq−1,1.

From here it follows that
〈
K0

0,0β
q−1,1
h , βq−1,1

h

〉
=

〈
RicFβq−1,1

h , βq−1,1
h

〉 ≥ 0
if and only if the tangent Ricci operator is non-negative.

Now, if we evaluate the action of the operator K2
0,0 on ωq,0 = α1∧ ..∧αq ∈

Ωq,0, the following relation is obtained:

K2
0,0ω

q,0 =
∑

a,b

αa ∧ ifb
RT ,2

fb,fa
ωq,0 +

∑
i,a

αa ∧ iei
RL,2

ei,fa
ωq,0

=
∑
i,a

αa ∧ iei
RL,2

ei,fa
ωq,0

=
∑
i,a

(−1)a−1αa ∧ α1 ∧ .. ∧ αa−1 ∧RL,2
ei,fa

αa(ei) ∧ .. ∧ αq

=
∑
i,a

R0(ei, fa, fa, ei)α
1 ∧ .. ∧ αq

= scal0mixedα
1 ∧ .. ∧ αq,

where scal0mixed is the mixed scalar curvature corresponding to the R0−mixed
curvature tensor field (see (10)). In the above calculations we have used the
fact that, in general, the operator K vanishes when it acts on a differential
form of top dimensional degree.

Finally, we present the operator K1
−1,1 acting on differential forms of the

type ωq,0, with ωq,0 ∈ Ωq,0.

K1
−1,1ω

q,0 =
∑

a,b

αa ∧RL,0
fb,fa

ifb
ωq,0 +

∑
i,a

βi ∧ ifaR
T ,0
fa,ei

ωq,0

+
∑
i,j

βi ∧ iej
RL,2

ej ,ei
ωq,0

=
∑
i,j

βi ∧ iej
RL,2

ej ,ei
ωq,0,

16



in accordance with Remark 1.
Now, as Hq

b and Eq,0
2 are isomorphic topological vector spaces, the van-

ishing result stated in Theorem 2 is just a straightforward application of the
above results .

Remark 5 There are very interesting connections between the term Hq
b (F)

of the basic cohomology and the property of being taut (see e.g. [Al]). If the
dimension of the leaves is equal to 1, then the foliation is geodesible if and
only if Hq

b (F) 6= 0 (see [MoSe]). In this case the leaves are curves and the
leafwise Riemannian tensor field RL vanishes, as well as the other ”mixed”
components of the curvature tensor field that imply more than one tangent
to the leaves vector field, so we finally obtain Corollary 1.

Remark 6 The Riemannian flows defined on a 3-dimensional manifold were
already classified by Y. Carrière in [Car]; the author presents an example of
non-geodesible Riemannian flow using a direct computation. Following the
same idea, D. Domı́nguez gives another example (see [Do]). The above results
might help us to find non-geodesible Riemannian flows and, in general, to
study Riemannian foliations in higher dimension.

In the final part of this paper we investigate the special case of a Rieman-
nian foliation which locally can be described as a product of two Riemannian
manifolds. It this case we obtain the vanishing of the O’Neill tensor fields
A and T ; it turns out that the only nonzero curvature components are the
intrinsic ones, R⊥ and RF . In this particular case we get

K−2,2 = K−1,1 = K1,−1 = K2,−2 = 0

and
Kh

0,0 = K0
0,0 + h2K2

0,0,

where
K2

0,0(α ∧ β) =
∑

a<b

αa · αb ·R⊥
fa,fb

α⊗ β.

Also, we get ∇2
L,0,0 = ∇L,1,−1 = ∇L,−1,1 = ∇T ,1,−1 = ∇T ,−1,1 = 0 and,

as a consequence, ∇hω = ∇0
L,0,0ω + h∇T ,0,0ω. Under these circumstances,

considering also (25), the relation (22) becomes:
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〈∆hωh, ωh〉 = ‖D0ωh‖2 + h2 ‖∇T ,0,0ωh)‖2 + h2
〈
K2

0,0ωh, ωh

〉

+o
(
h2

)
.

Now, applying the Bochner technique for the transverse part of ω, and ar-
guing as in the classical case (see e.g. [Pet]) we obtain the following vanishing
result:

Proposition 5 In the special case of a Riemannian foliation that can be lo-
cally identified with a product of two Riemannian manifolds, if the transversal
curvature operator ρ⊥ is strictly positive, then Eu,v

2 = 0 for 0 < u < q.

As an application, we might consider the case of a compact foliation
([Mo], Appendix E). Let us take a compact orientable surface B of genus 2
and the Lie group SO(3,R), which is known to be a compact Lie group with

strictly positive curvature [Wal]. If we take the product manifold M̃ := B̃ ×
SO(3,R), where B̃ is the universal covering of B, and consider an arbitrary
homomorphism h : π1(B, x0) → SO(3,R), with x0 ∈ B, then we can define

the smooth diagonal action of π1(B, x0) on M̃ by setting

R[γ](x̂, y) = (x̂[γ], h([γ]−1)(y))

for each [γ] ∈ π1(B, x0).

If we take now the quotient manifold M = M̃/R, this becomes a SO(3,R)-
foliation. Then the terms Eu,v

2 of the spectral sequence vanish for 0 < u < 3.

Remark 7 The above result is in fact a generalization of a result of Ph.
Tondeur, M. Min-Oo and E. Ruh (see [MiRuTo]) in the special case of a
compact foliation.
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